CIQTEK Quantum Diamond Microscope (QDM) is a wide-field magnetic resonance based on the principle of spin magnetic resonance in the diamond nitrogen-vacancy center (NV center). The spin quantum state of the NV center luminescence defects is susceptible to the surrounding microwave and static magnetic fields and can be read out using a laser.
Measuring the magnetic or microwave field distribution around the sample using NV centers enables quantitative nondestructive microscopic magnetic imaging with high spatial resolution, a large field of view, a large dynamic range of detectable magnetic fields, and fast imaging speed.
It's also compatible with ambient testing environments to cryogenic & vacuum extreme environments.
Ultra-high spatial resolution
Quantitatively non-invasive magnetic imaging
Large field of view
Fast imaging
Applications
Cellular magnetic imaging
CIQTEK Quantum Diamond Microscope could reach a high spatial resolution technology in the operating conditions of living biological samples than traditional magnetic imaging technology. By placing live cells (magnetotactic bacteria) upon the surface of NV centers and measuring the magnetic imaging with subcellular 400nm high spatial resolution, The magnetic imaging of living cells shows great value in the biological research area.
2D Van DerWaals magnets have all sorts of emerging anomalies including special magnetism. 2D Van Der Waals materials include insulators, semiconductors, and superconductors, etc. They have broad application prospects in spintronics and ultra-compact magnetic memory media.